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Abstract Allergy diagnosis is based on the patient's clinical
history and can be strengthened by tests that confirm the origin
of sensitization. In the past 25 years, these tests have evolved
from the exclusive in vivo or in vitro use of allergen extracts,
to complementary molecular-based diagnostics that rely on
in vitro measurements of IgE reactivity to individual allergens.
For this to occur, an increase in our understanding of the
molecular structure of allergens, largely due to the develop-
ment of technologies such as molecular cloning and expres-
sion of recombinant allergens, X-ray crystallography, or nu-
clear magnetic resonance (NMR), has been essential. New
in vitro microarray or multiplex systems are now available
to measure IgE against a selected panel of purified natural or
recombinant allergens. The determination of the three-
dimensional structure of allergens has facilitated detailed mo-
lecular studies, including the analysis of antigenic determi-
nants for diagnostic purposes.
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Introduction: When Allergen Extracts Are Not Sufficient
for Allergy Diagnosis

Allergy diagnosis begins with an analysis of the patient's clin-
ical history and physical examination [1]. A confirmation of
IgE reactivity to allergens is performed either in vivo by skin
tests using allergen extracts or by provocation tests, which are
the gold standard for allergy diagnosis, or in vitro by serolog-
ical analysis. However, the variability in allergen composition
and content of commercial allergen extracts can affect their
in vivo allergenic activity [2, 3]. Food challenges, specifically
double-blind placebo-controlled food challenges, represent
the most reliable way to diagnose food allergies, but it cannot
always be performed if patients are very sensitive to a certain
food [4]. In vitro tests, using extracts or purified allergens, are
advantageous for patients who do not have a normal skin,
cannot discontinue interfering medications, are opposed to
undergo skin test or have high sensitivity to allergens judging
by clinical history, which indicates that anaphylaxis is possible
[5]. Nevertheless, in vitro assays need to be always evaluated
in the context of the patient's clinical history, because positive
IgE reactivity in vitro, which is indicative of allergen sensiti-
zation, does not necessarily lead to clinical responsiveness.

Tests based exclusively on allergen extracts do not always
reveal the source of IgE sensitization, especially when cross-
reactive allergens are involved and patients may be sensitized
to multiple sources of homologous allergens. In the last
20 years, molecular cloning, expression, and analysis of the
molecular structure of allergens have allowed improving
in vitro diagnosis by using panels of purified individual aller-
gens instead of extracts. This approach, called molecular al-
lergy diagnosis, relies on the availability of properly folded
purified allergens [6]. The panels of allergens to be tested
should be selected based on careful considerations of sensitiz-
ing allergens, patterns of sensitization, prevalence of IgE sen-
sitivity, and cross-reactivities among homologous allergens
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present in a specific area. For this, knowledge of the structural
features shared by homologous allergens and of molecular
structures of antigenic determinants is essential. In addition,
the stability of the allergens used for molecular diagnosis may
be improved by avoiding degradation by proteolytic enzymes,
often present in extracts. Molecular diagnosis, used within the
context of the patient's clinical history, is an effective approach
to identify patient's IgE sensitization profiles, which can be
highly heterogeneous or show geographical variability [7,
8••]. Molecular diagnosis has proven beneficial and able to
improve allergy diagnosis based solely on allergen extracts
[7, 8••, 9–11]. In this review, recent progress on defining mo-
lecular features of allergens that are relevant for allergy diag-
nosis will be evaluated.

Update of Allergen Nomenclature and Recently Identified
Allergens

The identification of new allergens, name assignment, and
assessment of their allergenic relevance is necessary for the
selection of panels of allergens for molecular diagnosis. The
Allergen Nomenclature Sub-committee from the World
Health Organization and International Union of Immunologi-
cal Societies (WHO/IUIS) maintains a systematic nomencla-
ture of allergenic proteins and publishes the official database
of approved allergen names (www.allergen.org). The Sub-
committee recently revised the current nomenclature to reflect
progress in identification, cloning, and sequencing of aller-
gens, while increasing consistency in the classification of al-
lergens. Names were updated for respiratory allergens from
birch and ragweed pollen, midge larvae, and horse dander;
food allergens from peanut, cow's milk, and tomato; and ce-
real grain allergens [12].

In the last years, new allergens were identified that
may contribute to improved allergy diagnosis, including
panels of inhaled allergens (i.e., olive pollen) and food
allergens (i.e., kiwi) [13, 14]. New allergens originating
from domestic animals, such as small mammals and
rodents which have become popular pets in the USA
and Europe, have been reported. These include Fel d
1-like allergens from dogs and rabbits [15, 16], a major
dog allergen Can f 5 which is a prostatic kallikrein [17],
and two guinea pig lipocalins, Cav p 2 and Cav p 3.
The latter are major allergens, proven to be valuable for
diagnosis of guinea pig allergy when combined with
serum albumin Cav p 4 [18]. Several new allergens,
classified in up to 33 groups, have been identified in
mite. They include two major allergens: Der p 23, a
peritrophin-like protein, and Der f 24, an ubiquinol-
cytochrome c reductase-binding protein homolog [19•,
20]. Both allergens show high prevalence of IgE sensi-
tization, comparable with the one reported for Der p 1

(93 %) and Der p 2 (77 %), currently used to diagnose
mite-allergic patients [21]. The need to add new aller-
gens for improving diagnosis of mite allergy will need
to be evaluated, and may not be as critical as it is for
other allergen sources, such as kiwi fruit and honeybee
venom. The use of larger allergen panels can improve
the diagnostic sensitivity in some cases and has revealed
the importance of allergens underrepresented in com-
mercial therapeutic extracts [8••, 22••].

Three-Dimensional Structures of Allergens

The WHO/IUIS official database of systematic allergen
nomenclature (www.allergen.org) currently contains over
780 allergens. In the past 15 years, the three-
dimensional structures of just over 100 allergens have
been determined thanks to the development of X-ray
crystallography and nuclear magnetic resonance technol-
ogies (Tables 1 and 2). The availability of recombinant
allergens has also contributed to the determination of
their three-dimensional structure when: (1) the natural
allergens were not available in sufficient amounts re-
quired for crystallography, (2) natural polymorphisms
led to a lack of molecular homogeneity required for
crystallization, (3) degradation or proteolytic cleavage
of the natural allergen occurred, or (4) the natural aller-
gens underwent post-translational modifications that im-
paired crystallization (i.e., glycosylation). Recombinant
allergens can be engineered for high-level expression
of homogeneous whole molecules or stable structural
fragments, with mutations that prevent undesired N-gly-
cosylation. They are usually expressed in vitro in the
prokaryotic system Escherichia coli or in eukaryotic
systems. Examples include yeasts such as Pichia
pastoris or, less commonly, tobacco plants or Chinese
hamster ovary cells [23, 24]. Allergens used for in vitro
molecular diagnosis need to be properly folded and
meet high standards of quality. Usually, mass spectrom-
etry is used to confirm the amino acid sequence, and
spectroscopic and/or NMR analysis are used to confirm
the secondary and/or tertiary structures, respectively
[25–28]. A recent study applied high-throughput NMR
technology to assess the molecular fold of food aller-
gens utilized for diagnosis [29]. The structural confor-
mation of an allergen preferentially recognized by IgE
needs to be also taken into consideration for diagnostic
purposes. Some allergens have regulatory functions
resulting from major conformational changes upon cal-
cium binding to EF-hand motifs. A recently determined
solution structure of Phl p 7 showed three different
conformations of the allergen [30]. Although most
calcium-binding allergens have been described for
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pollens, they are also present in animals such as cock-
roach [31]. IgE antibody binding to the calcium-bound
allergen is usually higher, suggesting that sensitization
occurs preferably against that allergen form [31]. The
allergen in the conformation that best binds IgE should
be selected for diagnosis.

What We Learnt from Allergen Structures that
Contributes to Diagnosis

Allergen Structure and Standardization

Currently, the potency of allergen extracts is determined as
total allergenic activity, regardless of the allergen content,
and is measured in units that differ among manufacturers.
Allergen extracts contain a mix of allergenic and non-
allergenic molecules and often include proteases that may re-
duce potency over time. Since 2001, the CREATE project
funded by the European Union developed certified interna-
tional standards with verifiable allergen content expressed in
mass units [32, 33]. Nine recombinant major allergens from
birch, timothy grass, olive pollen, and dust mite were mea-
sured by amino acid analysis, and their IgE reactivity was
assessed by direct RAST, RAST inhibition, immunoblotting,
and basophil histamine release. The recombinant allergens
rBet v 1, rPhl p 5a, and rDer p 2 were found to be equivalent
to the natural molecules in terms of structure and IgE antibody
reactivity. As a follow-up project, rBet v 1 and Phl p 5a were
selected and produced under GMP conditions for their estab-
lishment as European Pharmacopoeia (Ph. Eur.) Reference
Standards through a project run by the Biological
Standardisation Programme (BSP) of the European Director-
ate for the Quality of Medicines and HealthCare (EDQM)
[34]. These standardization programs are made possible
thanks to the availability of properly folded allergens whose
molecular structure was tested by SDS-PAGE, mass spec-
trometry, circular dichroism spectroscopy, and small-angle
X-ray scattering. Similar efforts will facilitate standardization
of allergen extracts for diagnosis and immunotherapy, by
using homogeneous preparations of properly folded allergen
(natural or recombinant) with IgE reactivity comparable with
the native counterpart. Recently, a single multi-allergen stan-
dard was prepared with eight natural allergens following the
CREATE principles, for assessment of allergen exposure [35].

Such homogeneous solutions are easily obtained when
molecules have a relatively stable structure. However, allergen
degradation may occur due to the presence of proteolytic en-
zymes in extracts or the labile nature of certain allergenic
molecules. The cockroach allergen Bla g 1 illustrates an ex-
ample of a molecule that is difficult to standardize, because it
naturally breaks down into fragments and has always been
measured in arbitrary units. This allergen is formed by

multiple consecutive amino acid repeats resulting from gene
duplication of a ~100 amino acid domain [36]. The basic
structural unit of Bla g 1 was recently determined and facili-
tated standardization of assays in absolute units [37••]. This
study showed that the structural integrity of either the whole
allergen or a fragment is important for standardization. Final-
ly, diagnostic products based on purified allergens should fa-
cilitate standardization and increase batch-to-batch consisten-
cy [38].

Allergen Stability and Association with Disease

Allergenicity of food proteins has largely been associated with
their lability, despite a lack of absolute correlation between
digestibility measured in vitro and protein allergenicity [39].
Patients with oral allergy syndrome have IgE reactive to
pepsin-sensitive allergens, whereas IgE from patients suffer-
ing systemic reactions recognize pepsin-resistant allergens. A
study confirmed a difference in the lability of kiwi fruit aller-
gens recognized by both kinds of patients [40]. A reduction in
acidity reduced pepsin digestion and presumably increased the
sensitizing capacity of the food. Interestingly, kiwi digestion
resulted in the creation of new epitopes, either by aggregation,
dissociation, or unmasking of allergenic protein digest prod-
ucts that were recognized by patients showing systemic reac-
tions. The lability of some food allergens (i.e., Bet v 1-
homologs from the Rosaceae family) is also the main reason
why most commercial food extracts for SPTs (particularly
those of the Rosaceae) are not reliable, and SPTs with fresh
fruits and vegetables remain the best way to diagnose food
allergy in vivo in these patients [41]. In contrast, lipid transfer
proteins (LTP) are highly resistant to both heat treatment and
proteolytic digestion. The stability of LTP has been associated
with the induction of severe systemic reactions [42, 43]. These
characteristics were attributed to the LTP three-dimensional
structure composed of four α-helices, held by four disulfide
bridges, with a large internal hydrophobic cavity that can har-
bor lipids. Similarly, digestion-resistant fragments of 2S albu-
mins from cashew, Ana o 3, and peanut Ara h 6, retained IgE-
binding epitopes, and disruption of disulfide bonds eliminated
their IgE-binding capacity [44, 45•]. These studies highlight
the protective effect of the three-dimensional structure of the
allergen against digestion. Given the complexity of the human
gastrointestinal tract, the use of physiologically relevant
in vitro systems to evaluate digestibility of allergens has been
evaluated [46]. These would involve not only the use of pep-
sin but also the simulation of the stomach and small intestine
environment with addition of surfactants (i.e., phospholipids)
and bile salts, considering the effect of food matrices on
allergen digestion. In general, differences in molecular stabil-
ity, which is determined by the three-dimensional structure of
the allergen, can influence the variability in allergen compo-
sition of extracts used for diagnosis and immunotherapy. Also,

Curr Allergy Asthma Rep  (2015) 15:8 Page 7 of 13  8 



conventional extracts may be deficient in significant IgE-
binding components, due to differences in protein extractabil-
ity [47]. These are factors to be considered for the production
of diagnostic products.

Non-protein Molecules Involved in the Induction of Allergic
Responses or IgE Recognition: Implications for Diagnosis

Carbohydrates N-glycans from plant and insect glycopro-
teins are common in allergens, and their IgE recognition
in in vitro diagnostic tests may cause false-positive re-
sults. These sugars are known as cross-reactive carbo-
hydrate determinants (CCD) and display a wide variety
of structures that range from oligomannosidic type to
complex Le(a)-carrying glycans [48, 49]. The most im-
portant CCD molecules are α1,3-fucose in insect glyco-
proteins or this fucose plus β1,2-xylose in plant glyco-
proteins [50, 51]. Two types of O-glycans have been
identified in Art v1, and one of them, a mono-β-
arabinosylated hydroxyproline, was found to constitute
a new, potentially cross-reactive, carbohydrate determi-
nant in plant proteins [52].

The clinical relevance of carbohydrates as antigenic
determinants has been a source of controversy for a
long time. With some exceptions, cross-reactive carbo-
hydrate determinants are mostly considered not to be
clinically relevant. One third of the CCD-positive sera
from patients with tomato allergy were reported to have
biologically relevant CCD-specific IgE antibodies [53].
In this case, the use of natural allergens versus recom-
binant allergens expressed in prokaryotic systems would
be preferred for diagnostic purposes. Conversely, the
use of recombinant allergens expressed in E. coli, which
are not glycosylated, would be preferred to allergens
expressed in P. pastoris which may contain O- and N-
linked glycans that decrease the specificity of diagnostic
tests [54]. Another option would be to express the al-
lergen in P. pastoris with substitutions of specific sites
involved in glycosylation. Recently, the use of a semi-
synthetic CCD blocker has been suggested to inhibit
IgE binding to CCD and enhance diagnostic selectivity
[55•].

Lipids and Other Small Ligands An increasing number of
allergens are known to bind lipids or small ligands. The
identity of some allergen ligands was revealed in part
thanks to determination of the three-dimensional struc-
ture of the allergen [37••]. The lipocalin allergen Bla g
4 binds tyramine and octopamine in solution, as shown
by NMR and isothermal titration calorimetry [56]. Ara h
8 is a Bet v 1-like allergen that binds the isoflavones
quercetin and apigenin, as well as resveratrol [57].
Some studies suggest that lipidic ligands from allergens

could possess immunomodulatory properties. Der p 2
was reported to mimic the function of MD-2, the lipo-
polysaccharide (LPS)-binding component of the Toll-like
receptor (TLR) 4 signaling complex, involved in activa-
tion of the innate immune system. This function was
identified as a consequence of determining the
immunoglobulin-like fold of Der p 2 [58]. Similarly,
Fel d 1, Can f 6, and Par j 1 were proposed to bind
LPS and had immunomodulatory activity [59, 60]. Bla g
1 is formed by capsules with an internal cavity that
contains lipids, such as palmitic, oleic, and stearic acids.
Lipidic ligands could also increase molecular stability, a
desired quality for allergens to be used for diagnosis.
The addition of phosphatidylcholine (which is a natural
ligand of LTPs) to grape LTP contributed to the resis-
tance of the protein to digestion [43]. The possible in-
fluence of allergen-associated lipids in diagnosis has not
been investigated, as it has for carbohydrates.

Diagnosis and Molecular Determinants of Cross-Reactivity

The identification of cross-reactive allergens from different
sources has improved the capacity to correctly diagnose and
understand allergic reactions. The diagnostic procedure and
therapeutic regimen can be simplified by selecting represen-
tative molecules out of clusters of cross-reactive allergens
[61]. Species-specific allergens can be added to the panel for
molecular diagnosis to contribute to the identification of the
source of sensitization.

Clinical cross-reactivity indicates sensitization to cross-
reactive allergens (whereas the opposite is not always true).
Therefore, an understanding of the molecular determinants of
cross-reactivity is important for diagnostic purposes. In gen-
eral, for cross-reactivity to occur, a high degree of amino acid
identity throughout the entire protein is required (>70 %),
whereas cross-reactivity is rare below 50 % identity [62].
The main determinant of cross-reactivity is the presence of
identical amino acids at the molecular surface accessible to
the antibodies.

Recently, unusual cases of cross-reactivity or lack thereof
have been described that question the criterion to assess the
allergenic risk of novel proteins according to the WHO/FAO/
EFSA/Codex [63]. This criterion is a value of 35 % or more
amino acid identity over a sliding window of 80 amino acid
residues. Despite a high sequence identity of 91 % between
bovine and caprine β-caseins, there are cow's milk-tolerant
patients that recognize the caprine allergen, without cross-
reacting with bovine β-casein [64]. Conversely, the kiwi al-
lergen Act d 11 showed cross-reactivity with Bet v 1-like
allergens, despite sharing low sequence identity (under
21 %) [65]. Recently, an unexpected IgE cross-reactivity, at-
tributed to similar surface-exposed peptides, was found be-
tween the major peanut allergen Ara h 2 and the
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nonhomologous allergens Ara h 1 and Ara h 3, despite struc-
tural and sequence differences [66••]. This study is an excep-
tion to the general rule that cross-reactivity mainly occurs
among homologous proteins that share similar structural fea-
tures. Overall, these results demonstrate that the presence of
conserved residues that define IgE antibody recognition of
similar epitopes is responsible for IgE cross-reactivity. There-
fore, criteria for prediction of allergenicity based on amino
acid sequence homology are useful as guidelines, especially
when dealing with new proteins of unknown structure, but
they are not an accurate way to predict the presence of IgE
antibody-binding epitopes and cross-reactivity.

Antigenic Structure for Diagnosis of Allergy and Design
of Immunotherapy

Linear Epitopes: Markers of Severity or Persistence in Foods

Most studies for mapping IgE antibody-binding epitopes
in allergens focus on the identification of linear epi-
topes. Synthetic peptides derived from the allergen ami-
no acid sequence or allergen fragments are tested for
IgE antibody binding in immunoblot or microarray as-
says, to identify linear IgE antibody-binding epitopes.
This experimental approach has revealed interesting as-
sociations between IgE recognition patterns of linear
epitopes and allergic disease, specifically for foods, in-
cluding milk, peanut, egg, and lentil. Initial studies re-
ported that the IgE recognition of at least one of three
epitopes in caseins identified patients with persistence to
milk allergy [67, 68]. The development of microarray
technology allowed further exploration of the signifi-
cance of linear epitopes in food allergens. Different
IgE recognition patterns of sequential epitopes of four
caseins and β-lactoglobulin were observed between re-
active and tolerant milk-allergic patients [69]. Severity
of cow's milk allergy was associated with a greater IgE
epitope diversity (i.e., number of epitopes recognized)
and higher IgE antibody affinity [70]. Regarding peanut,
highly heterogeneous patient's IgE profiles to epitopes
from Ara h 1, Ara h 2, and Ara h 3 were found, with
no dominant epitopes in Ara h 2 [71, 72]. The clinical
sensitivity to peanut allergens, determined by double-
blind, placebo-controlled peanut challenge, was positive-
ly related to the IgE (but not IgG4) epitope diversity.
The epitope-recognition patterns remained stable over
time, although no specific epitopes were associated with
severe reactions to peanut [73]. Another study found a
significantly greater IgE binding and broader epitope
diversity in peanut-allergic patients compared with
peanut-tolerant individuals, with no significant differ-
ence in IgG4 binding between groups [74••]. Regarding
egg allergy, four linear epitopes from ovomucoid were

identified as markers of persistent egg allergy [75]. A
positive correlation between epitope diversity in the len-
til allergen Len c 1, lentil-specific IgE levels, and respi-
ratory symptoms was found [76]. These studies provid-
ed a detailed analysis of the IgE reactivity profiles of
allergic patients to peptides (therefore linear epitopes)
using microarray technology. However, the usefulness
of this approach for clinical practice needs to be further
evaluated [77].

Conformational Epitopes for Diagnosis and Immunotherapy

Most epitopes in inhalant allergens are conformational,
since these proteins do not undergo digestion and
transformation processes typical of foods [78]. Increas-
ing evidence shows that, in addition to linear epitopes,
conformational epitopes are also important in food al-
lergens if sensitization occurs to intact or partially
digested allergens. Jarvinen et al. showed that persis-
tent hen's egg allergy was associated with IgE recogni-
tion of not only linear but also conformational epitopes
in ovomucoid and ovalbumin [75]. The IgE reactivity
and allergenic potential of Pru p 3 was shown by using
a reduced and alkylated form of recombinant Pru p 3
to depend mainly on conformational epitopes [79]. An-
other study proved that peptides identified as major
linear epitopes on Pen a 1 and Ara h 2 had no relevant
capacity to inhibit the IgE binding to the native aller-
gen. Overall, these results reveal that conformational
epitopes resulting from the three-dimensional structures
of allergens need also to be considered to evaluate IgE
responses to food allergens [80].

Conformational epitopes are formed by amino acids
that are brought close in space upon protein folding but
are not necessarily contiguous in the sequence of the
allergen. Most published evidence about the existence
of conformational epitopes in allergens is indirect, de-
rived from reduction of IgE antibody binding to modi-
fied allergens. These can be obtained by reduction of
disulfide bonds that hold their three-dimensional struc-
ture, fragmentation or expression of recombinant frag-
ments, or mutagenesis or alteration of allergen structure
by calcium depletion [31, 44, 45•, 81]. The identifica-
tion of the exact location of conformational epitopes has
only been possible with the development of technolo-
gies that elucidate the three-dimensional structure of
the proteins. Lysozyme was the first allergen to have
antigenic determinants mapped by X-ray crystallography
in the 1980s [82]. Since then, the structures of 11
allergen-antibody complexes have been determined.
Two were complexes of Fab fragments of IgG antibod-
ies with the birch pollen allergen Bet v 1 and the bee
venom allergen Api m 2 (hyaluronidase) [83, 84]. The
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epitope in Bet v 1 was proven to be important for IgE
antibody binding and for IgE cross-reactivity among ho-
molog allergens [85]. Two complexes were formed
using IgE antibody Fab obtained from combinatorial
libraries from allergic patients. The allergens involved
were β-lactoglobulin from bovine milk and timothy
grass pollen allergen Phl p 2 [86, 87]. These studies
were especially interesting given the fact that IgE is
polyclonal, and native IgE is unavailable as a monoclo-
nal antibody in large amounts required for X-ray crys-
tallography. Thus, recombinant IgE represents the clos-
est molecule representing a native antibody.

In recent years, an extensive analysis of antigenic determi-
nants in cockroach and mite allergens has been performed
following the determination of the crystal structures of anti-
body fragments in complex with Bla g 2, Der p 1, and Der f 1
(Table 1) [88, 89••, 90••]. A mechanism of antibody recogni-
tion involving protein plus a carbohydrate was found for Bla g
2 co-crystallized with a monoclonal antibody [89••] (Fig. 1,
top). The epitopes recognized by the IgG mAb were also
involved in IgE antibody binding to Bla g 2 and group 1 mite
allergens, as proven by detailed antibody binding analysis of
allergen epitope mutants [90••, 91]. Structural analysis of the-
se epitopes combined with site-directed mutagenesis and

antibody-binding analysis revealed determinants of specificity
and cross-reactivity for Der p 1 and Der f 1 (Fig. 1, bottom).

Recently, the structures of isolated antibody con-
structs have also been solved. These include an anti-
Bla g 1 IgG scFv, an anti-Bet v 1 IgE scFv and three
anti-Der p 1 IgG Fab (mAb 4C1: 3RVT, 3RVU; mAb
10B9: 4POZ) [90••, 92, 93]. The use of antibodies spe-
cific for Blag 1 and Bet v 1 in mutant or peptide-
binding experiments, respectively, led to the molecular
location of species-specific epitopes. The identification
of conformational epitopes involved in IgE antibody
binding contributes to our understanding of antigenic
relationships among molecules. This information is use-
ful for diagnostic purposes, especially if dominant cross-
reactive epitopes are found among homologous allergens
from different sources, as described for Bet v 1 and Der
p 1 [85, 90••]. Most interestingly, the allergen structure
and/or residues involved in IgE antibody binding can be
specifically modified to produce hypoallergens for future
use in immunotherapy. These low-IgE-binding mole-
cules are expected to reduce side-effects due to increas-
ing allergen doses administered during immunotherapy.

Conclusions

Correctly folded molecules are needed for diagnostic pur-
poses, given the importance of the allergen fold as a determi-
nant of allergenicity. The three-dimensional structure of aller-
gens provides relevant information for diagnosis by facilitat-
ing structural and functional classification of allergens, aller-
gen standardization, evaluation of the molecular stability of
allergens for diagnostic products, and the analysis of protein-
aceous and non-proteinaceous molecules that may influence
diagnosis. In recent years, detailed analyses of the antigenic
structure of allergens have led to the identification of common
structural features and molecular determinants of specificity
and cross-reactivity, including linear and conformational anti-
body binding epitopes relevant for allergic disease. Overall,
this information is the basis for the design of molecules for
diagnosis and immunotherapy.
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Fig. 1 Composite diagram showing binding of monoclonal antibody
(mAb) Fab/Fab′ fragments to Bla g 2 (top) and Der p 1 (bottom). Top,
binding of mAb 7C11 (PDB ID 2NR6; cyan) and mAb 4C3 (PDB ID
3LIZ; green). Carbohydrate residues bound to Asn268 of free Bla g 2 are
yellow and repositioned in the complex with mAb 4C3 are blue. These
sugars are involved in the antibody interactions with Bla g 2 (orange),
extending the mAb 4C3 epitope. A carbohydrate moiety bound to
Asn317 is located far from the epitope. Bottom, binding of Der p 1 (gray)
with Fab fragments of mAb 4C1 (PDB ID 3RVW; blue), 10B9 (PDB ID
4PP2; red), and 5H8 (PDB ID 4PP1; orange). Epitopes recognized by the
mAb 4C1 (cross-reactive with Der f 1), and the Der p 1-specific mAb
10B9 partially overlap. Catalytic Cys34 is shown in pink. Figure was
prepared with Pymol (www.pymol.org)
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